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ABSTRACT 24 

Ocean acidification has the potential to impact the ocean’s biogeochemical cycles and 25 

food web dynamics, with phytoplankton in the distinctive position to profoundly influence both, 26 

as individual phytoplankton species play unique roles in energy flow and element cycling. 27 

Previous studies have focused on short-term exposure of monocultures to low pH, but do not 28 

reflect the competitive dynamics within natural phytoplankton communities. This study explores 29 

the use of experimental microcosms to expose phytoplankton assemblages to elevated pCO2 for 30 

an extended period of time. Phytoplankton communities were collected from two 31 

biogeochemically distinct Louisiana estuaries, Caillou Lake (CL) and Barataria Bay (BB), and 32 

cultured in lab for 16 weeks while bubbling CO2 enriched air corresponding to current (400 ppm) 33 

and future (1000 ppm) pCO2 levels. Results suggest that elevated pCO2 does not implicitly 34 

catalyze an increase in phytoplankton biomass (chlorophyll a). While pigment data showcased a 35 

parabolic trend and microscopic observations revealed a loss in species diversity within each 36 

major taxonomic class.  By the end of the 16-week incubation, 10 out of the 12 cultures had a 37 

community structure analogous to that of the startup phytoplankton assemblage collected from 38 

the field. Natural phytoplankton assemblages exposed to elevated pCO2 experienced multiple 39 

transitional states over the course of a 16-week incubation, indicating that there is no 40 

deterministic successional pathway dictated by coastal acidification but community adaptation 41 

was observed.  42 

 43 
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1. INTRODUCTION 47 

Unprecedented climatic changes brought about by the rise of large-scale conventional 48 

energy production have spurred a host of studies concerning ecosystem changes. Prior to the 49 

industrial revolution, the atmospheric concentration of greenhouse gas carbon dioxide had not 50 

exceeded 300 ppm for the last 15 million years (Pearson and Palmer, 2000). Anthropogenic 51 

activities, such as combustion of fossil fuel and deforestation, have increased modern pCO2 52 

levels to 400 ppm (Monastersky, 2013). The Intergovernmental Panel on Climate Change (IPCC) 53 

predicts levels could rise to 1000 ppm by the end of the 21st century if business continues as 54 

usual (Solomon, 2007). About 30% of atmospheric CO2 enters the oceans altering the balance of 55 

inorganic carbonate chemistry  (Sabine et al., 2004). Increasing CO2 in the ocean reacts with 56 

H2O to form carbonic acid (H2CO3), which releases hydrogen ions (H+) as it further dissociates. 57 

Excess H+ lowers the pH of the water, making it more acidic. By 2100, ocean acidification could 58 

drop the pH of the ocean by 0.4 units (Caldeira and Wickett, 2003). 59 

Acidification has been well studied in the open-ocean (Feely et al., 2004; Orr et al., 2005; 60 

Riebesell and Tortell, 2011), but less work has been done in near-shore systems because of its 61 

complexity. Changes in seawater inorganic carbonate chemistry will not be uniform around the 62 

globe, as regional factors can have a larger impact on local water chemistry variability than 63 

global pCO2 increases (Wanninkhof et al., 2015). In neritic zones, pH varies as a function of 64 

salinity, alkalinity, nutrient input, production, respiration, calcification, and degradation of 65 

organic matter. In such a dynamic environment, it becomes a challenge to pinpoint a suitable 66 

reference point from which the ecosystem deviates, so the local manifestation of increased pCO2 67 

is unknown. River input has a direct influence on salinity and nutrients, but changes in 68 
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accordance with rainfall, land use, and river diversions. Furthermore, physical and biological 69 

drivers often have oppositional effects of either compounding or mitigating acidification.  70 

Estuaries are highly productive environments in which phytoplankton blooms can be 71 

triggered by excessive nutrients. Photosynthetic activity creates a sink for CO2, with resonating 72 

effect on the inorganic carbonate chemistry of the water (Dai et al., 2008). In the Gulf of Mexico, 73 

algal blooms have been correlated with increased drawdown of DIC and increased pH (Lohrenz 74 

and Cai, 2006). In Louisiana, the biological uptake of inorganic carbon in surface waters and 75 

subsequent downward flux is among the highest in the world (Cai, 2003). However, the 76 

production-sequestration model may be too simplistic, as eutrophication may indirectly 77 

accelerate acidification. Following algal die-off, microbial respiration increases and releases CO2 78 

as a waste product, decreasing pH (Cai et al., 2011; Wallace et al., 2014). Some models 79 

demonstrate that anthropogenic CO2 emissions plus CO2 from respiration facilitate acidification 80 

in a more than additive fashion, particularly at higher temperatures (Sunda and Cai, 2012). 81 

Others studies show just the opposite, that eutrophication in coastal areas will offset pH 82 

depression and ultimately play a more significant role in carbonate chemistry of coastal zones 83 

than ocean acidification (Borgesa and Gypensb, 2010). 84 

Coastal Louisiana is an ideal example of a mixing zone in constant physiochemical 85 

fluctuation due to high river input. Louisiana’s large-river deltaic estuaries receive 55% of 86 

freshwater inflow from the Atchafalaya River in the west and the Mississippi River in the east 87 

(Bianchi et al., 1999). In these locations, estuarine carbonate chemistry doesn’t vary linearly with 88 

salinity, and thus is not a simple additive function of freshwater and seawater components (Keul 89 

et al., 2010). In most freshwater systems alkalinity is low, due to a relative deficit of bicarbonate 90 

and other ions, so estuaries generally have a weaker buffering capacity than oceanic 91 
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environments (Cai, 2003). However, the northern Gulf of Mexico river-plume represents one of 92 

the most highly buffered areas in the United States (Wang et al., 2013), due to high 93 

concentrations of bicarbonate delivered by the Mississippi (TA 2400 µmol kg-1) and the 94 

Atchafalaya (TA 2000 µmol kg-1) (Cai et al., 2010). Total alkalinity increases approaching the 95 

mouth of the Mississippi (Keul et al., 2010), but local buffering capacity may also be linked to 96 

the biological removal of CO2.  97 

Phytoplankton dynamics are key in understanding how increased pCO2 will affect 98 

biogeochemical cycling. Collectively, these producers not only sequester carbon to the deep 99 

ocean but also supply energy to higher trophic levels. Changes in phytoplankton communities 100 

will change taxon-specific nutrient cycling (Tagliabue et al., 2011) and have a corresponding 101 

impact on their role as carbon sinks. There is a general assumption that primary productivity will 102 

increase with more available carbon, but whether the effect on marine production will be positive 103 

or negative is uncertain (Hein and Sand-Jensen, 1997; Schippers et al., 2004; Beardall et al, 104 

2009; Taucher & Oschlies, 2011; Gao et al., 2012; Grear et al., 2017). Furthermore, increased 105 

biomass alone is not inclusive of the functional changes brought about by shifts in phytoplankton 106 

community composition. Acidification may cause a shift towards less nutritious species or 107 

degrade the nutrition potential of an existing species (Rossoll et al., 2012), with resonating 108 

effects up the food web (Hettinger et al., 2013).  109 

Individual species of phytoplankton will be uniquely affected by acidification, largely 110 

due to regulation of their carbon concentrating mechanisms (CCM) (Collins et al., 2014). For 111 

this reason, much of the literature illustrates a bidirectional reaction to acidification across and 112 

within taxa. For example, Rost et al. (2008) reports contradictory results within the major 113 

plankton functional types (PFTs): silicifiers (diatoms), calcifiers (coccolithophores), and 114 
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diazotrops (cyanobacteria). The response of individual phytoplankton species does not capture 115 

the dynamics within natural phytoplankton communities, as natural phytoplankton communities 116 

are comprised of a diversity of species, each varying in physiology and potential for adaptation. 117 

Competition within and across groups is also likely to be affected by elevated pCO2 (Dutkiewicz 118 

et al., 2015).  119 

Investigations of community response to ocean acidification have been limited yet have 120 

the highest potential for global application. Some offer evidence that increased pCO2 could 121 

significantly alter physiology and community structure (Eggers et al., 2014; Tortell et al., 2002; 122 

Tortell et al., 2008). Tortell et al. (2002, 2008) observed a shift from dinoflagellates to larger 123 

diatoms and overall increase in productivity. Results from Eggers et al. (2014) also indicated a 124 

move towards dominance of large diatoms. However, within a phytoplankton community Kim et 125 

al. (2006) saw an increase in only a singular diatom species Skeletonema costatum, and Nielsen 126 

et al. (2010, 2012) found no difference between succession in treated versus untreated 127 

assemblages. Natural communities from Narragansett Bay also indicated shifts in community 128 

composition at different pCO2 concentrations, but in contrast to Tortell et al. (2002, 2008), noted 129 

an increase in small (<5 µm) phytoplankton growth rates at elevated pCO2 conditions suggesting 130 

a shift in the overall size distribution of the community (Grear et al., 2017).  This could be due to 131 

the origin of the initial community and highlights the need for site specific studies.  132 

Previous community studies were short-term, terminating after two weeks, relying on fast 133 

turnover to supply a quick, sufficient model of succession using batch culturing techniques 134 

(Tortell et al, 2002; Nielsen et al., 2012; Grear et al., 2017). Long-term community level 135 

experiments are essential to address how ocean acidification and community adaptation occur on 136 

the same timescale (Raven, 2005; Rost et al, 2008). Prolonged temporal scales ensure the biotic 137 
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response reflects recovery, adaptation and ecosystem resilience.  Through highly applicable, 138 

long-term bulk microcosms can differ from natural systems under prolonged conditions (French 139 

and Watts, 1989) due to culturing effects.  Semi-continuous microcosms culturing techniques 140 

have been noted to be useful in prolonging experimental conditions (Kranz et al., 2009; Tortell et 141 

al, 2008; LaRoche et al.; 2011) and have been shown to minimize the effects of long-term 142 

culturing thus providing an additional tool to explore community adaptation.  This study seeks to 143 

further our understanding of phytoplankton response to elevated pCO2 in estuarine systems, and 144 

the biogeochemical and trophic implications using community-level experiments, long-term 145 

acclimation techniques and plankton communities’ specific to freshwater dominated estuaries in 146 

the southeast United States. The structure of local phytoplankton communities is a mutable 147 

function of the in situ environmental conditions (Wissel et al., 2005); thus different communities 148 

can be expected in different areas.  149 

2. MATERIALS AND METHODS 150 

2.1 Site selection and field sampling  151 

In fall 2016, natural water samples and phytoplankton communities were collected from 152 

two sites within southern Louisiana (Figure 1), which provided naturally distinct habitats in 153 

terms of salinity and nutrient levels. Caillou Lake (29.241100, -90.935333) is influenced 154 

seasonally by the Atchafalaya River and has greater freshwater input. While lower Barataria Bay 155 

(29.271700, -89.963083) is represented by poor water quality (e.g., dissolved organics) during 156 

high river discharge and runoff.  This site experiences overall reduced freshwater input and 157 

increasing salinities.   158 

Water quality data was collected in the field at the time of sampling. Temperature (°C) 159 

and salinity were recorded using a pre-calibrated YSI (Yellow Springs Instrument) Model 85 160 
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deployed at 1m below the sea surface. Water clarity was measured by Secchi disc. To quantify in 161 

situ inorganic carbon, dissolved inorganic carbon (DIC) and total alkalinity (TA) samples were 162 

collected in the field, poisoned with 0.02% mercuric chloride (HgCl2) according to Dickson et al. 163 

(2007), placed on ice for transportation, and stored at 4°C until analysis. Additionally, whole 164 

water subsamples of 200 mL were collected for microscopic analysis, preserved in the field with 165 

2% glutaraldehyde, transported on ice, and stored at 4°C.  166 

Seawater was filtered in the field through an 80 µm pore size mesh screen into 22-liter 167 

Nalgene carboys, capped with no headspace and covered for transportation back to Baton Rouge, 168 

LA (approximately 3-hour drive from each location). Removal of large heterotrophic plankton 169 

was necessary to limit the impact of long-term bottle effects (Sommer, 1985).  Upon return to 170 

laboratory facilities, water was mixed and distributed in triplicate based on pCO2 treatment and 171 

site among 25-L glass carboys, each replicate contained 20-L of estuarine water.  All additional 172 

sampling (for micronutrients, trace metals, chlorophyll a, photopigments, and CHN) was 173 

conducted after transportation to Louisiana State University (LSU). Collection at the two sites 174 

occurred within 48-hours of each other.   175 

2.2 Semi-continuous microcosm treatments 176 

Both sites were treated with two different pCO2 levels; a control of [400] ppm and 177 

elevated level of [1000] ppm. Placement of each treatment vessel was randomized within the 178 

incubation location. Phytoplankton were grown under a 12h:12h light:dark cycle using daylight 179 

fluorescent bulbs (5000 Kelvin, CRI 82, 2150 lumen brightness). Photosynthetically available 180 

radiation (PAR) was measured with Biospherical Instruments' Quantum Scalar Laboratory 181 

(QSL) sensor Model 2100 and varied between 40-50 µmol quanta m-2 s-1 in each treatment. 182 

Temperature, as measured with a dual pH/temperature probe, ranged between 20 - 22ºC.  183 
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Inorganic carbonate chemistry was manipulated by gently bubbling humidified pCO2 184 

enriched air through fine glass frits suspended 1cm above the bottom of the glass carboys.  185 

Treatments were gently mixed at the bottom of the culturing vessel at approximately 200 rpm of 186 

using a 2 cm stir bar to minimize growth on culturing vessel walls and cell sedimentation.  High 187 

turbulence has been noted to bias growth of certain phytoplankton groups, notable 188 

dinoflagellates (Juhl and Latz, 2002), cyanobacteria (Xiao et al, 2016), and green alga (Hondzo 189 

and Lyn, 1999).  While other studies indicate that these phytoplankton groups utilize turbulence 190 

to increase fitness (Sullivan et al., 2003; Sengupta et al., 2017).  Turbulence remained low (200 191 

rpm) during our experiments thus limiting the potential impact on these species.  Working class 192 

certified mixture represented present-day conditions of CO2 at [400] ppm and predicted values 193 

by 2100 of CO2 at [1000] ppm (IPCC, 2013).  Gas flow rate was set using mass flow controllers 194 

and adjusted by rotameters per treatment at approximately 10 ml min-1.  195 

2.3 Sample collection 196 

Sampling and nutrient additions occurred every 2 weeks. Directly following each 197 

sampling, a total of 10% of the water was removed and replaced with water from each respective 198 

field site that had been filtered (0.2 µm), autoclaved, and nutrients added to achieve an f/40 199 

concentration. To maintain a semi-continuous culture, a 1:10 dilution was established to maintain 200 

the presence of rare species, ensure the dilution ratio did not influence community dynamics, and 201 

that the inorganic carbon within the system was not drastically altered during the dilution period 202 

(Haukka et al., 2006).  Incubation occurred for a total of 16 weeks.  203 

Dissolved inorganic carbon was collected at the start of the incubation and at experiment 204 

termination. Total alkalinity (TA) and pH measurements were taken every two weeks to monitor 205 

carbonate chemistry, and chl a was measured to quantify the overall algal biomass. Pigment 206 
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samples were taken to examine taxonomic succession, while CHN samples were taken to 207 

measure changes in total nutritional value of the assemblage every 4 weeks. Additionally, 208 

pigment samples were taken prior to the first nutrient addition and water replacement (at day 0, 209 

2, 7 and 16 for Caillou Lake and day 0, 4, 9, and 18 for Barataria Bay) to quantify the initial 210 

response.   211 

2.4 Laboratory Analysis 212 

2.4.1 Chemical Analysis 213 

Dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi) were measured 214 

by filtering 30 mL through 0.45 µm acetate membrane filters into 30 ml acid-washed high-215 

density polyethylene bottles, which were frozen at -20 °C. Water samples were then analyzed for 216 

dissolved inorganic nutrients colorimetrically using an automated discrete analyzer (AQII; Seal 217 

Analytical). The DIN pool is comprised of NH4-N and NO3- + NO2- (abbreviated as NOx-N). 218 

NH4-N was measured according to EPA Method 350.1 (USEPA 1993), NOx-N measured 219 

according to EPA Method 353.2 (USEPA 1993), and DIP (PO4) measured according to EPA 220 

Method 365.1 (USEPA 1993). DSi concentrations were quantified on filtered subsamples using 221 

an O.I. Analytical Flow Solutions IV Autoanalyzer (APHA Method 4500-SiO2). Total N and 222 

total P concentrations were measured per D’Elia (1977) and USEPA Method 365.2. Pre-223 

combusted 250 mL borosilicate BOD bottles were filled directly in water at a depth of 0.5 m at 224 

each field location to determine in-situ DIC. Dissolved inorganic carbon samples collected at the 225 

end of the incubation period (week 16) were extracted from culturing units via a peristaltic pump 226 

as detailed in Bockmon and Dickson (2014). The bottles were immediately poisoned with 0.02% 227 

super saturated HgCl2 solution and stored at 4°C until analysis. Samples were processed by the 228 

National Ocean Sciences Accelerator Mass Spectrometry Facility at Woods Hole Oceanographic 229 
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Institution. Dissolved inorganic carbon concentrations were measured by sample acidification 230 

followed by coulometric titration (DIC Model 5011 Coulometer) (DOE, 1994; Dickson et al., 231 

2007). 232 

Alkalinity was measured using a modified procedure based on Dickson et al. (2007). 233 

Temperature, pH, and electromotive force (e.m.f) were measured using Thermo Electron 234 

Corporation Orion 370 pH/Ion meter. Using a Schott Titroline easy, samples were titrated with 235 

0.097 N hydrochloric acid (HCl) to achieve a pH of 3.5, allowed to de-gas for 3 minutes, then 236 

titrated step-wise at 20 second intervals in 0.05 mL increments until pH 3.0, creating a Gran 237 

Line. The final value for TA was converted from potentiometric data using the SeaCarb program 238 

(http://CRAN.R-project.org/package=seacarb) in RStudio (http://www.rstudio.com/). Certified 239 

reference material (University of California, San Diego, Scripps Institution of Oceanography, 240 

CRM batch #158) was used to validate each analytic session.  241 

A Mettler-Toledo S220 SevenCompact pH/Ion meter fitted with a InLab Reach Pro-225 242 

pH electrode with temperature and reference probe was used to measure pH (total scale). The 243 

meter was calibrated before each sampling date using 3-points, the 4.01, 7, and 10.01 standards 244 

from Orion Application Solution. Additionally, two organic buffer solutions, Tris (2-amino-2-245 

hydroxymethyl-1,3-propanediol) and Amp (2-aminopyridine), were prepared in artificial 246 

seawater of 15 psu according to Dickson (2007). Measurement of these standards was used to 247 

verify the probe’s accuracy at the beginning of the experiment.  248 

Particulate total carbon and nitrogen was collected and analyzed via a  Costech 4010 249 

Elemental Combustion Analyzer according to EPA method 440 (Zimmermann et al., 1997). 250 

Briefly, samples were filtered using pre-combusted glass filtration units on to pre-combusted 251 

25mm GF/F filters.  Filters were dried overnight at 60 °C, weighed and then stored in a 252 
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desiccator until analysis. All other carbonate system parameters were calculated using the 253 

CO2SYS Excel program (http://cdiac.ornl.gov/ftp/co2sys/) adapted by Pierrot et al. (2006) using 254 

dissociation constants from Mehrbach (1973), refit by Dickson and Millero (1987),  Dickson 255 

(1990), and Uppström (1974). 256 

2.4.2 Biological analysis 257 

Total phytoplankton biomass was determined via chlorophyll (chl) a. Fluorescence was 258 

measured before and after acidification with HCl using Turner fluorometer 10-AU in low light 259 

according to Parsons et al. (1984).  Bulk phytoplankton groups were identified using signature 260 

pigments ratios.  Identification of diagnostic pigments was identified through High Performance 261 

Liquid Chromatography (HPLC) following Pinckney et al. (1998) at the HPLC Photopigment 262 

Analysis Facility at University of South Carolina. Briefly, filters containing photopigments were 263 

lyphilized and extracted in 90% acetone  and stored in the dark for 18 - 20 to hours at –20°C. 264 

Extracts were filtered through 0.45 µm PTFE filter (Gelman Acrodisc) and 250 µl injected into 265 

an HPLC system equipped with two reverse-phase C18 columns in series (Rainin Microsorb-266 

MV, 0.46 ×10 cm, 3 mm, Vydac 201TP, 0.46 × 25 cm, 5 mm). A nonlinear binary gradient, 267 

adapted from Van Heukelem et al. (1995), was used for pigment separations. Solvent A 268 

consisted of 80% methanol and 20% ammonium acetate (0.5 M adjusted to pH 7.2), and Solvent 269 

B was 80% methanol and 20% acetone. Absorption spectra and chromatograms were acquired 270 

using a Shimadzu SPD-M10av photodiode array detector, where pigment peaks were quantified 271 

at 440 nm. 272 

The following accessory pigments were recognized: chlorophyll a, chlorophyll b, 273 

chlorophyll c3, peridinin, 19- butfucoxanthin, fucoxanthin, 19-hexfucoxanthin, neoxanthin, 274 

violaxanthin, prasinoxanthin, diadinoxanthin, alloxanthin, diatoxanthin, lutein, and zeaxanthin. 275 
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The chemical taxonomy algorithm CHEMTAX V1.95 276 

(http://gcmd.nasa.gov/records/AADC_CHEMTAX.html) was then used to calculate the relative 277 

contributions cyanobacteria, chlorophytes, cryptophytes, diatoms, and dinoflagellates to the total 278 

chl a abundance (Mackey et al., 1996), assuming the ratio of each accessory pigment remains 279 

constant within the assemblage from each field site. As use of region-specific pigment ratios is 280 

vital in obtaining accurate results (Lewitus et al., 2005), CHEMTAX program matrices were 281 

obtained from Zhao and Quigg (2014) and provided with final pigment matrices in 282 

supplementary material (Supplementary Table 1 – 5) .  Quimiotaxonomy (referred to as 283 

taxonomy) is reported as the percentage of the total assemblage and was grouped by field site 284 

and pCO2 level during analysis.  285 

Microscopic analysis was conducted in order to verify pigment ratios and identify the 286 

most dominant phytoplankton to the lowest possible taxonomic level. Using an Axio Observer -287 

A1 inverted microscope (Axiovert 135, Zeiss), the abundance of diatom and cyanobacteria cells 288 

were counted on gridded Sedgewick-Rafter slides and scaled to cells L-1. The biovolume of an 289 

algal type (e.g. ellipsoid) was computed using similar geometric models according to Sun and 290 

Liu (2003). Ratios were verified using the summation of the biovolumes of each type within the 291 

broad taxonomic class. Samples collected from the field, at an intermediate time point (Week 8) 292 

and at the conclusion of the incubation (Week 16) were analyzed. 293 

2.5 Data Analysis 294 

The effect of pCO2 on phytoplankton assemblages was compared between sites using 295 

several different methods. Distinct 2-way analysis of variance (ANOVA) were used to determine 296 

the effect of pCO2 as a fixed factor on pH, and chl a. The relationship between two non-297 

categorical variables was determined using a Pearson’s correlation test. All analyses were 298 
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conducted using the RStudio statistical computing software, and significance was defined as a p 299 

value < 0.05. Numbers are reported as the mean ± standard deviation. The effect of pCO2 on 300 

community composition (considered as the contribution of major taxonomic groups to the total 301 

chl a pool, square root transformed to increase the effect of less dominant taxa) was determined 302 

using a permutational multivariate analysis of variance (PERMANOVA) in PRIMER-6 303 

measuring Bray-Curtis Similarity. 2D multidimensional scaling (MDS) graphs were generated 304 

through PRIMER, with overlay clusters based on group-average super imposed on the plot at 305 

60% and 80% similarity.  306 

3. RESULTS 307 

Caillou Lake (CL) and Barataria Bay (BB) water clarity, inorganic chemistry, and 308 

temperature were comparable at the time of sampling (Table 1). Caillou Lake, influenced by the 309 

Atchafalaya River, had a salinity of 12 while Barataria Bay, which is influenced by the 310 

Mississippi River, had a higher salinity of 16. In both sites, the DIN (NO3
- + NO2

-) was below 311 

detection, whereas the phosphorous (PO4) was very low but still measurable. Silica content for 312 

Caillou Lake was higher, 81.467 µM, than Barataria Bay, 44.733 µM, although the 313 

phytoplankton biomass was reversed, with higher biomass recorded in Barataria Bay (28.62 ± 314 

1.32 µg chl a L-1) than Caillou Lake (10.78 ± 0.75 µg chl a  L1). The ratio of C:N in Caillou 315 

Lake, 6.98 ± 0.18, was very close to Redfield ratio of 6.625, whereas in Barataria Bay the C:N 316 

was slightly higher at 7.06 ± 1.17. 317 

3.1 Field (Initial) phytoplankton communities 318 

The phytoplankton community in Caillou Lake (Figure 2) was dominated by a diverse 319 

assemblage of cyanobacteria (81.4%), including filamentous cyanobacteria, Microcystis sp., 320 

Anabaena sp., Raphidiopsis c.f. curvata, Cylindrospermopsis c.f curvispora, and 321 

Cylindrospermopsis c.f raciborskii. The presence of diatoms (6.74%) was a mixture of small 322 
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pennate Navicula sp., medium size Cylindrotheca closterium (also known as Nitzschia 323 

closterium), and Chaetoceros c.f simplex. Few dinoflagellates of the Ceratium and  324 

Protoperodinium genus were also observed, making up 4.32% of the pigment volume 325 

(Supplementary Table 6). The nanoflagellates (7.54%) were unable to be unambiguously 326 

identified, though the pigment analysis suggests they were comprised of chlorophytes and 327 

cryptophytes.  328 

The phytoplankton community in Barataria Bay (Figure 2) was more diverse. Large 329 

diatoms made up 31.48% of the total assemblage, including chain-forming Chaetoceros sp., 330 

Skeletonema sp., and Thalassionema c.f nitzschioides., as well as Coscinodiscus sp. and 331 

Cylindrotheca closterium were observed. Cyanobacteria represented only 17.07% of the 332 

community, but was a mix of filamentous cyanobacteria were observed and included chains of 333 

Anabaena sp., Cylindrospermopsis sp., Microcystis sp., and Raphidiopsis sp. Dinoflagellates 334 

(39.03%) had the most significant contribution to the pigment volume, both Karenia mikimotoi, 335 

and Prorocentrum minimum were identified (Supplementary Table 7). Chlorophytes and 336 

cryptophytes also has a substantial presence (12.41%) but were unable to be definitively 337 

identified to a lower taxonomic level. Euglenophytes were microscopically observed in field 338 

samples, though not included as a group in the pigment analysis, as they disappeared quickly 339 

after incubation began and have overlapping pigments with chlorophytes.  340 

3.2 Long-term incubation 341 

Within 2 weeks of incubation, pH levels begun to diverge between the two pCO2 342 

treatments and achieved a significant difference (p>0.01) after 6 weeks of incubation (Figure 3 343 

A, D). The greatest pH difference was observed at 10 weeks, but by weeks 14 and 16 the pH of 344 
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the cultures began to converge once more (Figure 3 A, D), though the overall CO2 available to 345 

the plankton community was still elevated in the [1000] pCO2 treatments.  346 

Total alkalinity (TA) remained stable, ranging between 1800-2000 µmol kg-1 in both 347 

pCO2 treatments for the first 10 weeks of the experiment (Figure 3 B, E). Starting at week 12, CL 348 

[400] ppm treatments began to gradually decrease to 1400-1600 µmol kg-1 while CL [1000] ppm 349 

cultures remained unchanged.  At week 14, two replicates of the BB [400] cultures decreased 350 

significantly to 420 µmol kg-1 and 975 µmol kg-1, while the [1000] ppm treatments remained 351 

stable (Figure 3 B, E). The pH of all cultures rose steadily over the course of the experiment 352 

while the total alkalinity dropped, indicating changes in carbonate chemistry may have a 353 

relationship to aging of the cultures (Figure 3 A, D). No relationship was identified between 354 

biomass and pH.  355 

Over the course of the incubation, CL [400] ppm cultures achieved a higher chl a (7.05 ± 356 

9.10 µg chl a L-1) than CL [1000] ppm (6.87 ± 8.97 µg chl a L-1), following nutrient additions 357 

(week 4, week 10, week 16) (Figure 3 C). Acidification treatments did not impact on BB 358 

chlorophyll, as [400] ppm treatments had an average biomass of 4.40 ± 4.85 µg chl a L-1, and 359 

[1000] ppm treatment was 4.41 ± 4.86 µg chl a L-1 (Figure 3 F).  360 

3.3 Phytoplankton succession 361 

During the first two weeks of incubation, pigment samples were taken at more frequent 362 

time intervals in order to elucidate the initial response of the assemblages collected from the field 363 

to culture conditions (Figure 4). Though a pH difference had been established by the end of the 364 

first 2 weeks of incubation (Figure 3 A, B), there was virtually no difference in the community 365 

structure between [400] and [1000] ppm treatments in either assemblage. Between weeks 2 and 366 

4, the response of each individual culture diverged (Figures 5 and 6).  367 
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3.3.1 Caillou Lake 368 

Both [400] ppm and [1000] ppm cultures had increased in diatoms and chlorophytes 369 

while decreasing in cyanobacteria by week 2 of the incubation (Figure 4, A-B) and continued 370 

through week 4. The control CL [400] ppm replicates reached a maximum diatom dominance 371 

(84% of the phytoplankton assemblage) (Figure 5 B, C) by week 4, while [1000] ppm replicates 372 

were more diverse, with one reaching 86% diatoms (Figure 5 D), while the other two were at 373 

42% diatoms and 20% diatoms (Figure 5 E,F). Chlorophytes remained steady throughout the 374 

experiment, between 6-15%, with a spike in one CL [1000] ppm replicate (Figure 5 F).  Diatom 375 

peaks corresponded with C:N (Figure 5).  376 

After 8 weeks of incubation, the CL [400] ppm cultures were dominated by diatoms C. 377 

cloisterum (106 cells L-1) and Navicula sp. (105-106 cells L-1). Cyanobacteria was a diverse 378 

mixture of filamentous cyanobacteria (106 to 107 cells L-1) and Microcystis sp. (106 cells L-1). 379 

Notably, one CL [400] replicate also contained blooms of small centric diatoms (5x106 cells L-1) 380 

and chain forming Anabaena sp. (3x106 cells L-1), corresponding with a sharp spike in C:N to 381 

10.1 (Figure 5 B) (Supplementary Table 8). Within the CL [1000] ppm assemblages, diatoms 382 

were less dominate but the taxonomic composition was also predominately C. cloisterum (105 to 383 

107 cells L-1) and Navicula sp. (105-106 cells L-1). Cyanobacteria was comprised of a filamentous 384 

species (106 to 107 cells L-1) (Supplementary Table 9). C:N ranged from 6.2 to 10.1 in [400] ppm 385 

cultures and  from 7.2 to 10.2 in [1000] ppm cultures.  386 

By week 12, all CL [400] ppm cultures had rapidly decreased in percent diatoms and 387 

increased in percent cyanobacteria. The CL [1000] ppm cultures also began to decrease in 388 

percent diatoms, though the trend was more gradual, as they had not achieved as high a 389 

maximum during intermediate phase. All 6 cultures decreased or plateaued in C:N ratio. Finally, 390 
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after 16 weeks of incubation, the treatments were dominated by filamentous cyanobacteria (107 391 

to 108 cells L-1). One notable deviation was in a [400] ppm replicate, which was the only culture 392 

to remain dominated by diatoms, experiencing a bloom of C. simplex (107 cells L-1) and 393 

maintaining a presence of Navicula sp. (2x105 cells L-1) (Figure 5 A) (Supplementary Table 8). 394 

While C. cloisterum disappeared from all [400] ppm cultures, it persisted in 2 out of 3 [1000] 395 

ppm cultures in lesser amounts (104, 105 cells L-1) (Supplementary Table 9). The C:N ratio 396 

ranged between 6.9-8.5 in [400] ppm cultures and 5.1-7.3 in [1000] ppm cultures.  397 

3.3.2 Barataria Bay 398 

Assemblages from BB began shifting after 4 days (Figure 4 C, D) with an increase in 399 

diatom populations, while cyanobacteria and dinoflagellates decreased and chlorophytes stayed 400 

constant (Figure 4). This trend continued over the next 4 weeks of incubation as diatoms 401 

assemblages increased from 35% to 68-85% in 5 out of 6 Barataria Bay assemblages (Figure 6).  402 

Between week 4 and week 8, BB [400] ppm cultures decreased slightly to 60-75% 403 

diatoms (Figure 6 A, C), while all BB [1000] ppm cultures continued increasing, achieving a 404 

higher total percent diatoms of 90-95% (Figure 6 D, F).  Microscopic observation indicated 405 

diatoms blooms were dominated by C. closterium in both [400] ppm cultures (104-107 cells L-1) 406 

(Supplementary Table 10) and [1000] ppm cultures (106-107 cells L-1) (Supplementary Table 11).  407 

Diatom blooms in both control and elevated pCO2 treatment were also comprised of Navicula 408 

spp. (104-105 cells L-1) (Supplementary Table 9 & 10). Large C. cloisterum cells also developed 409 

in another BB [1000] ppm replicate. Two BB [1000] ppm treatments reached C:N peaks of 12 410 

and 18 (Figure 6 D, F), while all other cultures remained in the range of 5-10 for the entire 411 

incubation. 412 
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By the conclusion of the 16-week incubation period, the majority of the treatments 413 

remained dominated by diatoms (Figure 6), a mix of chain forming diatoms (107-108 cells L-1) 414 

and small pennate Navicula sp. (104-106 cells L-1). While C. closterium persisted (104-105 cells L-415 

1) in [1000] ppm treatments at terminal sampling (Supplementary Table 11).  The third [1000] 416 

ppm replicate showed 80% dominance by dinoflagellates at the terminal phase (Figure 6, F). 417 

While an increased presence of Karenia mikimotoi was noted under the microscope (measuring 418 

7.3x104 cells L-1) (Supplementary Table 11), it is likely that the total biomass in this replicate 419 

was too low to give an accurate representation of the taxonomic composition via pigment 420 

analysis.  421 

3.4 MDS Plots  422 

For CL, [400] ppm treatment cultures were more likely to resemble the startup 423 

assemblages at the intermediate phase, while [1000] ppm treatment cultures were more likely to 424 

resemble startup assemblages at terminal sampling, while BB yielded different results 425 

(supplementary Figure 1). Not all of the startup assemblages were within 80% similarity, which 426 

is likely due to the 4 day lag time between field collection and the official commencement of the 427 

incubation. For BB, terminal assemblages were more similar to startup assemblages than 428 

intermediate phases, with no distinction between pCO2 treatments. 429 

4. DISCUSSION 430 

Minute spatial variations mean there is no uniform pattern for phytoplankton community 431 

structure among estuaries. Estuaries habitually fluctuate across a wide range of physiochemical 432 

parameters, but anthropogenic influence may shift the boundary conditions. When combined 433 

with eutrophication or warming sea surface temperature, elevated pCO2 may drive estuaries to 434 

experience more frequent and intense pH extremes, changing taxonomic composition by giving a 435 
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competitive advantage of phytoplankton that thrive under those specific conditions (Hinga, 436 

2002). This is difficult to predict, because the responses of species within a major taxonomic 437 

class vary. In creating a long-term data set, the importance of extended phytoplankton studies 438 

becomes apparent. For example, Nielsen et al. (2010) noted a lack of response of coastal 439 

plankton communities to increased free CO2 and low pH after 14 days. They prescribed the 440 

nonresponse to the large diurnal and seasonal pH fluctuations typical of their study site, which 441 

may have created pH-tolerant algal species. This study indicates that 10 to 14-day sampling 442 

periods may not have been long enough in which to observe a response. After the initial two 443 

weeks of incubation, a pH difference had already been established in [400] and [1000] ppm 444 

Caillou Lake and Barataria Bay cultures, yet there was virtually no difference in the community 445 

structure between treatments in either estuarine assemblage. Although, it should be noted that the 446 

process of screening through the 80 µm mesh to eliminate zooplankton likely also excluded 447 

larger diatoms and dinoflagellates, preventing their initial presence in phytoplankton 448 

assemblages for use in experimental incubation. 449 

In this study, natural phytoplankton assemblages exposed to elevated pCO2 experienced 450 

multiple transitional states over the course of a 16-week incubation with no direct successional 451 

path, demonstrating similar results to other natural community long-term mesocosm studies 452 

(Bach et al., 2016; Bach et al., 2017; Eberlein et al., 2017; Rasconi et al., 2017).  Sampling 453 

occurred during the fall, a period of low river flow with primary production supported by storm-454 

driven nutrient resuspension. Caillou Lake is part of the prograding Atchafalaya deltaic system, 455 

with 98% of its freshwater coming from the river (Denes and Bayley, 1983). As river input peaks 456 

in spring and is at a minimum in fall, the water chemistry varies seasonally. In early fall, CL had 457 

a salinity of 12, indicating above average precipitation made up for the seasonal river discharge 458 
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minimum (NOAA National Climate Report). Drainage from the surrounding tributaries after the 459 

flooding event in Louisiana in August 2016 probably also contributed to the low salinity (Watson 460 

et al., 2017). Barataria Bay is a degrading delta in the Mississippi River Plume, which receives 461 

relatively little riverine input. Water chemistry in lower Barataria is more driven by tides and 462 

gulf water levels than seasonality (Madden et al., 1988), and is consequently a more brackish and 463 

stable environment. In Caillou Lake and Barataria Bay, nitrates were below detection and 464 

phosphates were nearly equal. Barataria had double the ammonium concentration of Caillou 465 

Lake. These physiochemical factors played a role dictating the unique structure of the initial 466 

phytoplankton assemblage. 467 

Each taxonomic class of phytoplankton varies in their competitive capabilities and 468 

ecological role, so community structure is not fixed, even in a particular area. Diatoms tend to 469 

dominate when silica is abundant (Officer and Ryther, 1980), and their large cell size make them 470 

particularly efficient in the process of sequestering carbon (Allen et al., 2005). Interestingly, 471 

though BB had half the amount of dissolved silica as CL, it had over twice the chl a or total 472 

biomass, assuming chl a as a proxy for phytoplankton biomass, and three times the relative 473 

percent diatoms. However, DIN was below detection at both sites. Cyanobacteria often possess 474 

the ability to fix atmospheric nitrogen, and are not thus uninhibited by its absence (Allen and 475 

Arnon, 1955). In this situation, it’s likely that Caillou Lake was nitrogen-limited, promoting 476 

cyanobacterial dominance (80%) over the expected diatoms. Barataria Bay was a rich mix of 477 

diatoms (31%), cyanobacteria (17%), and dinoflagellates (39%). Dinoflagellates are not great 478 

competitors for inorganic nutrients (Smayda and Reynolds, 2003), but many consume both 479 

organic and inorganic nutrients to make up for this (Litchman and Klausmeier, 2008; Smayda, 480 

1997), perhaps giving them an advantage in the Barataria Bay field assemblage. 481 
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The focus of this experiment was observing a community-level response to different 482 

inorganic carbonate systems. The pCO2 manipulation was successful in generating distinct pH 483 

values between treatments. It should be noted that startup cultures were at a pH of 8.5-8.7, near 484 

the upper end of the normal range reported from field studies (Guo et al., 2012). Four 14 weeks, 485 

[1000] ppm (elevated pCO2) treatments remained within the range of pH 8 to pH 9, while [400] 486 

ppm (control) cultures rose from 9 to 10. Rising pH over the course of the experiment was also 487 

observed in previous microcosm studies (Engel et al., 2005), indicating that the inorganic carbon 488 

chemistry is influenced by more than just the introduction of pCO2 enriched air via bubbling. 489 

Though it should be noted, that although the pH rose in both treatments, active bubbling of CO2 490 

occurred throughout the 16 weeks increasing the availability of CO2 to phytoplankton 491 

communities in the [1000] pCO2 treatments. It was expected that as biological activity would 492 

influence the pH of the water, resulting from the conversion of inorganic carbon to an organic 493 

form during photosynthesis, but no significant relationship between the pH of the water and the 494 

biomass of phytoplankton cultures was observed during our experiments. The factors 495 

contributing to rising pH over time are still poorly understood, but may be attributed to nutrient 496 

levels and bacterial activity (Peixoto et al., 2013), which were not a focus of the current study. 497 

Taxa vary in their physiological acquisition of inorganic carbon through use of a carbon 498 

concentrating mechanism (CCM), which uptakes HCO3
- (Tortell et al., 2000). Regulation of the 499 

CCM is also dependent on the availability of light, nutrients, and trace metals (Raven and 500 

Johnston, 1991). As CO2 and HCO3
- are the main sources of inorganic carbon for phytoplankton, 501 

carbon may sometimes be a limiting nutrient (Riebesell et al., 1993). The converse of this 502 

concept suggests that elevated pCO2 would encourage an increase in algal biomass, and is 503 

supported by recent studies showing enhanced overall biomass and primary production in 504 
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acidified phytoplankton communities (Sommer et al., 2017; Taucher et al., 2017). However, in 505 

this study pCO2 had no positive effect on the biomass of Caillou Lake or Barataria Bay cultures. 506 

Other research observed similar results in which elevated pCO2 incited no significant change in 507 

gross primary production, net community production, particulate and dissolved carbon 508 

production, or growth rates (Maugendre et al., 2015; Tortell et al., 2002). It seems that elevated 509 

pCO2 does not implicitly catalyze an increase in phytoplankton biomass, contradicting the 510 

generalization that increased available carbon will drive algal blooms. Though it should be noted 511 

that the system was highly buffered, which may contribute to the lack of significant changes due 512 

to increased pCO2.   513 

Measure of biomass alone doesn’t account for changes in species composition. CO2-514 

driven shifts in the taxonomic structure of phytoplankton assemblages may occur without notable 515 

change to total primary productivity or biomass (Tortell et al., 2002). In this study, control 516 

cultures of Caillou Lake had a higher biomass than acidified treatments at times, while there was 517 

no difference in Barataria Bay cultures. This suggests changes in biomass may be a function of 518 

species-specific responses within the different startup communities. Monthly f/40 nutrient 519 

additions over the course of the 16-week incubation changed the availability of critical nutrients 520 

(N, P, and Si) as well as trace elements (Fe, Ni, Cu) (see supplementary material). This created a 521 

different competitive dynamic during incubation than would have been experienced in the field 522 

at the time of collection, and likely played a role dictating community structure. 523 

In theory, changes in the relative contribution of major taxonomic groups should be more 524 

important in terms of ecological and biogeochemical function than genus or species levels shifts. 525 

However, individual species can also play unique roles in their communities. While pigment data 526 

alone showcased a parabolic trend that made it appear that the assemblages returned to their 527 
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startup community after 16 weeks of incubation, microscopic observations reveals this may not 528 

entirely be the case. For example, Caillou Lake assemblages were initially comprised of a 529 

diverse mixture of cyanobacteria, including Microcystis, Anabaena, Cylindrospermopsis, and 530 

Raphidiopsis. Intermediate assemblages, while greatly decreased in the total percent 531 

cyanobacteria due to diatoms blooms, contained similar cyanobacterial diversity. The total 532 

percent cyanobacteria increased again such that terminal assemblages contained a similar relative 533 

biovolume of cyanobacteria to the startup community. However, it was comprised of a singular 534 

species of filamentous cyanobacteria.  535 

Even considering only taxonomic class, past community studies show variable and often 536 

conflicting responses to elevated pCO2. For example, several species of chlorophytes increased 537 

at increased pCO2 (Yang & Gao, 2003), or are favored over cyanobacteria and diatoms in a 538 

community setting (Low-Decarie et al., 2011; Grear et al., 2017; Taucher et al., 2017). However, 539 

Verschoor et al. (2013) found that cyanobacteria benefitted over chlorophytes while Bermúdez et 540 

al. (2016) noted that chlorophytes decreased overall at elevated pCO2. In this study, an increase 541 

in chlorophytes was observed in one CL [1000] replicate after 4 weeks of incubation, but no 542 

distinctive response was seen in any of the other elevated pCO2 treatments. In another instance, 543 

Eggers et al. (2014) found that increased CO2 selected for large diatoms like Chaetoceros sp. and 544 

Thalassiosira constrica. While these species were present in the Barataria Bay startup 545 

community, they disappeared in both BB [400] and BB [1000] ppm treatments. Nonetheless, all 546 

Barataria Bay elevated pCO2 treatments did achieve higher diatom maxima than the controls 547 

(Figure 6).  548 

One diatom species, Cylindrotheca cloisterum, bloomed in all treatments and may have 549 

been impacted by increased pCO2.  The concentration of C. cloisterum was 7x106 ± 1.2x107 cells 550 
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L -1 in [400] ppm cultures and 1.74x107 ± 2.95x107 cells L -1 in [1000] ppm treatments at 551 

intermediate sampling points. Unusually large, misshapen cells were observed in two [1000] 552 

ppm cultures, one from Caillou Lake and the other Barataria Bay. Their unique appearance may 553 

be attributed to an increase in the secretion of mucilage, which attracted agglomerations of small 554 

(< 2 µm) algae. This phenomenon was observed in response to a different stressor; Najdek et al. 555 

(2005) found that intrusions of high salinity water caused hyperproduction of mucilage in C. 556 

cloisterum cells. C. cloisterum has been known to thrive in nutrient-unbalanced systems 557 

(Alcoverro et al., 2000), such as the N limited/ Si abundant microcosm setup created during this 558 

incubation. It can maintain a competitive advantage under a range of pH values; in a community 559 

study (Pedersen & Hansen, 2003) found that in water of pH 8-8.5, 3 species of diatoms were 560 

numerous (C. cloisterum, Cerataulina pelagica, and Leptocylindrus minimus), but only C. 561 

closterium was present at pH 9 - 9.5. The pH of the [400] ppm cultures was in the same range, 562 

from 9.1 to 9.6, at the time of intermediate sampling. While C. cloisterum disappeared from 563 

[400] ppm assemblages in both Caillou Lake and Barataria Bay, it persisted (though at a 564 

decreased number, 104-105) in most of the [1000] ppm assemblages. At terminal sampling the pH 565 

ranged from 9.4-10.3 in control cultures and 9.1-10.1 in elevated pCO2 cultures. The control 566 

cultures may have reached a pH above the tolerance range for this species. 567 

Phytoplankton play an important role supplying energy to higher trophic levels, and 568 

changes in taxonomic composition may impact their nutritional value. The C:N ratio gives 569 

insight into metabolic activity and nitrogen uptake, and may have biogeochemical implications. 570 

Riebesell et al. (2007) found that C:N ratios at low CO2 were comparable to the Redfield ratio 571 

(6.6), while at high CO2 they rose to 8.0. In our study, notable C:N spikes of 12 and 18 were 572 

observed in two BB [1000] ppm cultures. As a general trend both [400] ppm and [1000] ppm 573 
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cultures from Caillou Lake and Barataria Bay experienced intermediate maxima of C:N 8-10 574 

before decreasing to startup values (6-7) by the terminal sampling period. Other research shows 575 

C:N varies in response to pCO2, though not uniformly between species (Burkhardt et al., 1999; 576 

Tortell, 2000). Since different phytoplankton taxa are characterized by different stoichiometry 577 

under nutrient-replete conditions (Geider & La Roche, 2002), in this case C:N may have a 578 

relationship to diatom abundance, as they both achieve intermediate maxima. Higher C:N ratios 579 

would increase the magnitude of carbon sequestration and could prove to be a negative feedback 580 

mechanism balancing increasing atmospheric pCO2. However, high C:N is also indicative of 581 

nutrient limitation, and a lower C:N ratio may also be indicative of better nutritional value 582 

available to primary consumers. The role that pCO2 plays in the elemental composition of 583 

phytoplankton, and its deviation from the Redfield ratio, should continue to be a priority in new 584 

research.  585 

An interesting feedback loop to consider is the relationship between phytoplankton and 586 

trace metal concentrations at elevated pCO2. Not only does the abundance of trace metals 587 

influence productivity and species composition of phytoplankton communities, but the algae also 588 

control the distribution of trace metals (Sunda, 2012). The pH of seawater may alter the chemical 589 

speciation and dissolved concentrations of certain metals, like copper (Graneli & Haraldsson, 590 

1993; Kester, 1986). Likewise, acidification has been shown to decrease the rate of iron uptake 591 

in diatoms and coccolithophores (Shi et al., 2010). Higher amount of certain trace elements (Ni, 592 

Cu, Cd, Co) were observed in [1000] ppm BB cultures than [400] ppm cultures (supplementary 593 

Figure 2), despite having comparable biomass and warrants further study. 594 

Nutrients were added after 2 weeks, and by week 4 of incubation each assemblage had 595 

diverged in taxonomic composition. At the intermediate sampling period (week 8), Caillou Lake 596 
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and Barataria Bay observed opposite responses between their [400] ppm and [1000] ppm 597 

cultures. For example, in Caillou Lake assemblages, all three [400] ppm replicates had similar 598 

taxonomic structures (60% diatoms, 30% cyanobacteria, 0.5% dinoflagellates, 3% chlorophytes), 599 

while [1000] ppm replicates saw individual increases in dinoflagellates (to 20%) or chlorophytes 600 

(10%, 23%).  Even though the cultures were different at 8 weeks, by terminal sampling the 601 

majority had returned to their startup compositions, dominated by cyanobacteria in Caillou Lake 602 

and diatoms in Barataria Bay. This return to the initial community structure was only observed 603 

after 14-16 weeks of incubation, indicating that phytoplankton may show evidence of adaptive 604 

evolution to elevated pCO2 exposure during long term experiments. 605 

Future studies should continue to explore the synergistic effect of low pH and other 606 

environmental variables such as nutrients, salinity, and temperature. While certain areas, like 607 

coastal Louisiana, may be accustomed to acute low pH exposure, elevated pCO2 could increase 608 

sensitivity towards other environmental factors. Growth and community composition have been 609 

shown to be jointly affected by pCO2 and nutrient addition (Low-Décarie et al., 2015), but 610 

elevated temperature may be a stronger driver of community composition than acidification 611 

(Hare et al., 2007; Sommer et al., 2015).  Results from short-term or single-factor studies may 612 

not necessarily be representative of phytoplankton response in the long term. In the longest study 613 

reviewed, Rasconi et al. (2017) found that over the course of an 8 month incubation, elevated 614 

and fluctuating temperature resulted in lower growth of larger species, also decreasing diversity 615 

and evenness as cyanobacteria and chlorophytes gained dominance. Extending the length of 616 

incubation experiments and incorporating multiple factors allows for more comprehensive 617 

predictions for life in a changing climate. 618 

5. CONCLUSIONS 619 
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The physiochemical factors and initial phytoplankton community structure in Caillou 620 

Lake and Barataria Bay was fundamental to our results.  The phytoplankton community collected 621 

from Caillou Lake was dominated by an assortment of cyanobacteria, while Barataria Bay was 622 

an even more diverse mixture of diatoms, dinoflagellates, cyanobacteria, and nanoflagellates. 623 

Over the first week of incubation, the taxonomic structure of all Caillou Lake assemblages was 624 

unchanged. In contrast, Barataria Bay assemblages began changing after only four days. Over the 625 

course of the 16-week incubation, [400] ppm and [1000] ppm treatments in both Caillou Lake 626 

and Barataria Bay assemblages followed the same general parabolic successional pattern. Over 627 

the first 4-8 weeks they increased in relative percent diatoms, reaching a maximum at the 628 

intermediate stage, and then from weeks 8 to 16 transitioned to the startup community structure. 629 

By the end of the 16-week incubation, 10 out of the 12 cultures had a community structure 630 

analogous to that of the startup phytoplankton assemblage collected from the field. This finding 631 

supports conclusions by Eggers et al. (2014), who suggest that the initial ratio between major 632 

taxonomic classes is the main driver behind community structure, even at different pH levels. 633 

This trend suggests adaptation and competition was observed due to the long-term incubation 634 

(16-weeks). Our results highlight the need for long-term, community level microcosm studies, 635 

indicating that there was no deterministic response in biomass, community structure, or C:N 636 

dictated by elevated pCO2. On the contrary, comparison between different startup communities 637 

and past studies suggests that results from one area may not be generalized to other coastal 638 

ecosystems. Thus, current climate change models amalgamating response to increased pCO2 by 639 

plankton functional types may not truly be representative. 640 
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Figure 1. Collection sites in Caillou Lake and Barataria Bay (red circles).  Arrows indicate 1043 

respective freshwater sources which influence each estuarine ecosystems.   1044 

 1045 

Figure 2. Percent phytoplankton composition based on total chl a (estimated by ChemTax) in 1046 

Caillou Lake and Barataria Bay.  Percent contribution bars represent an average (n=3) collected 1047 

from the field locations. 1048 

 1049 

Figure 3. Mean pH (A, D), total alkalinity (B, E), and biomass (chl a) (C, F) for Caillou Lake (A 1050 

– C) and Barataria Bay (D – F) microcosm treatments over the course of the incubation.  Error 1051 

bars represent one standard deviation (n=3). Shaded boxes (E, F) indicate f/40 nutrient additions. 1052 

 1053 

Figure 4. Initial composition of diatoms (white), cyanobacteria (black), dinoflagellates (diagonal 1054 

lines), chlorophytes (white with black dots) and cryptophytes (black with white dots) over the 1055 

first two weeks; for (A) Caillou Lake [400] ppm, (B) Caillou Lake [1000] ppm, (C) Barataria 1056 

Bay [400] ppm, and (D) Barataria Bay [1000] ppm microcosms treatments.  Percent contribution 1057 

bars represent an average (n=3).   1058 

 1059 

Figure 5. Bars represent composition of diatoms (white), cyanobacteria (black), dinoflagellates 1060 

(diagonal lines), chlorophytes (white with black dots) and cryptophytes (black with white dots) 1061 

for individual microcosms from Caillou Lake over the course of the incubation, (A-C)  pCO2 1062 

[400] and (D-F) pCO2 [1000].  Lines represent C:N molar ratios. 1063 

 1064 



 

 
 

39

Figure 6. Bars represent composition of diatoms (white), cyanobacteria (black), dinoflagellates 1065 

(diagonal lines), chlorophytes (white with black dots) and cryptophytes (black with white dots) 1066 

for individual microcosms from Barataria Bay over the course of the incubation, (A-C)  pCO2 1067 

[400] and (D-F) pCO2 [1000].  Lines represent C:N molar ratios. 1068 















Table 1. Water quality parameters and diversity for Caillou Lake and Barataria Bay, Louisiana in 
Oct 2017. Detection limit for N=1.43 µM, P=0.13 µM. Averaged n=3 unless otherwise indicated 
with standard deviation. 

 

  Caillou Lake Barataria Bay 

GPS coordinates 29.241100, -90.935333 29.271700, -89.963083 

Date sampled 10-2-2016 9-30-2016 

Major river influence Atchafalaya Mississippi 

Temperature (°C) 26.3 29.6 

Salinity 12.2 16.6 

Water column depth (m) 1.8 2.6 

Water clarity (m) 0.3 1 

Total alkalinity (µmol kg-1) 1987.65 ± 2.2 2039.34 ± 18.58 

DIC (µmol kg-1) 1650, n=1 1500, n=1 

NO2
- + NO3

- (µM) <1.43 <1.43, 

NH4 (µM) 4.00 ± 0.071 17.49 ± 0.00 

PO4 (µM) 0.81 ± 0.00 0.87 ± 0.00 

Si (µM) 81.47±1.81 44.73± 0.06 

Chl a (µg L-1) 10.78 ± 0.75 28.62 ± 1.32 

C:N 6.98 ± 0.18 7.06 ± 1.17 

H Diversity Index 0.72 ± 0.08 1.35 ± 0.01  




